Skip to main content
U.S. flag

An official website of the United States government

Return to search results

A cohort study of possible risk factors for over-reporting of antihypertensive adherence

Published by National Institutes of Health | U.S. Department of Health & Human Services | Metadata Last Checked: September 06, 2025 | Last Modified: 2025-09-06
Background The identification of poor medicinal adherence is difficult because direct observation of medication use is usually impractical. Up to 50% of individuals on chronic therapies may not be taking their medication as prescribed. This study is one of the first to explore possible risk factors for over-reporting of antihypertensive adherence using electronic medication monitoring. Methods The adherence of 286 individuals on single-drug antihypertensive therapy in a large managed care organization was electronically monitored for approximately three months. Questionnaires on socioeconomic background, adherence to therapy, health beliefs, and social support before and after adherence monitoring were completed. Over-reporting of antihypertensive adherence was assessed by comparing the self-reported frequency of noncompliance with that determined from electronic dosing records. Risk factors for over-reporting were identified by contingency table analysis and step-wise logistic regression. Results Although only 21% of participants acknowledged missing doses on one or more days per week, electronic monitoring documented nonadherence at this or a higher level in 42% of participants. The following variables were associated with over-reporting: >1 versus 1 daily dose (OR = 2.58; 95% CI = 1.50–4.41; p = .0006), lower perceived health risk from nonadherence (OR = 1.35; 95% CI = 1.10–1.64; p = .0035), and annual household income of <$15,000 versus >$30,000 (OR = 2.64; 95% CI = 1.13–6.18; p = .025). Conclusions Over-reporting of adherence may be affected by factors related to dosing frequency, health beliefs and socioeconomic status. This topic deserves further investigation in other patient populations to elucidate possible underlying behavioral explanations.

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov