Skip to main content
U.S. flag

An official website of the United States government

This site is currently in beta, and your feedback is helping shape its ongoing development.

Return to search results

Geology shapefiles for the United States and Australia

Published by U.S. Geological Survey | Department of the Interior | Metadata Last Checked: August 25, 2025 | Last Modified: 20250331
These data present geologic map units for the United States (Horton and others, 2017; Wilson and others, 2015) and Australia (Raymond and others, 2012) reclassified to 31 generalized sub-type lithologic groups of igneous, metamorphic, and sedimentary rocks (Lawley and others, 2022). These generalized classifications are based on interpretation of map unit descriptions in the different map compilations. Given that map unit descriptions often contain multiple rock types, there were subjective calls necessary when assigning generalized lithologic classification. The data were developed as part of the tri-national Critical Minerals Mapping Initiative (Kelley, 2020) between the United States, Canada, and Australia, an effort to model and map prospectivity for basin-hosted Pb-Zn mineralization. A national-scale geologic map compilation for Canada is not publicly available. Therefore, Lawley and others (2021) compiled geologic source maps to produce a gridded model layer that is provided in this data release in the Child Items section “Gridded geology shapefiles for the United States, Canada, and Australia.” References Horton, J.D., San Juan, C.A., and Stoeser, D.B., 2017, The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August 2017): U.S. Geological Survey Data Series 1052, 46 p., https://doi.org/10.3133/ds1052. Kelley, K.D., 2020, International geoscience collaboration to support critical mineral discovery: U.S. Geological Survey Fact Sheet 2020-3035, 2 p., https://doi.org/10.3133/fs20203035. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Gadd, M.G., Huston, D.L., Kelley, K.D., Paradis, S., Peter, J.M., and Czarnota, K., 2021, Datasets to support prospectivity modelling for sediment-hosted Zn-Pb mineral systems: Natural Resources Canada Open File 8836, https://doi.org/10.4095/329203. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical raw materials: Ore Geology Reviews, v. 141, no. 104635, https://doi.org/10.1016/j.oregeorev.2021.104635. Raymond, O.L., Liu, S., Gallagher, R., Zhang, W., and Highet, L.M., 2012, Surface Geology of Australia 1:1 million scale dataset 2012 edition: Geoscience Australia, http://pid.geoscience.gov.au/dataset/ga/74619. Wilson, F.H., Hults, C.P., Mull, C.G., and Karl, S.M., comps., 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, 2 sheets, scale 1:1,584,000, 196-p. pamphlet, https://doi.org/10.3133/sim3340.

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov