Skip to main content
U.S. flag

An official website of the United States government

Sensor Validation using Bayesian Networks

Published by Dashlink | National Aeronautics and Space Administration | Metadata Last Checked: November 08, 2025 | Last Modified: 2025-03-31
One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation techniques address this problem: given a vector of sensor readings, decide whether sensors have failed, therefore producing bad data. We take in this paper a probabilistic approach, using Bayesian networks, to diagnosis and sensor validation, and investigate several relevant but slightly different Bayesian network queries. We emphasize that on-board inference can be performed on a compiled model, giving fast and predictable execution times. Our results are illustrated using an electrical power system, and we show that a Bayesian network with over 400 nodes can be compiled into an arithmetic circuit that can correctly answer queries in less than 500 microseconds on average. Reference: O. J. Mengshoel, A. Darwiche, and S. Uckun, "Sensor Validation using Bayesian Networks." In Proc. of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-08), Los Angeles, CA, 2008. BibTex Reference: @inproceedings{mengshoel08sensor, author = {Mengshoel, O. J. and Darwiche, A. and Uckun, S.}, title = {Sensor Validation using {Bayesian} Networks}, booktitle = {Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-08)}, year = {2008} }

Find Related Datasets

Click any tag below to search for similar datasets

Complete Metadata

data.gov

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?
Visit USA.gov